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A system composed of two coupled lattices, hence a layered structure, is studied when the unit at each site
is an active electronic circuit possessing two accessible stable steady states. In the absence of interlattice
coupling, each lattice taken separately represents a discrete, reaction diffusion system. We show that, depend-
ing on the strength of the diffusion coefficient, each lattice may exhibit either a wide variety of stable steady
patterns or a number of different wave patterns including rotating spirals. Moreover, for fixed reaction kinetics
each lattice can exhibit spiral waves of batkcitableand oscillatory type. For nonoscillating kinetics, the
metastable periodiclike behavior of the unit is at the origin of the oscillatory spirals. From initially different
global patterns or waves in each lattice, the interaction may lead to synchronization and hencécamew
trolled) form and the replication of a given one. We also show how there is reentry of spiral waves between the
two coupled layers associated with the “competition” of thedcillatory andexcitablespiral wave properties.
[S1063-651X98)08808-4

PACS numbes): 05.45+b

[. INTRODUCTION as a qualitative model to simulate various features of an ac-
tive medium[16—22.

Interaction of patterngsteady and traveling wave pat-  The paper is organized as follows. In Sec. Il, we introduce
terng is an important, widespread problem in various physi-the model problem, and give details of a unit or element in a
cal, chemical, and biological systems. Examples are the inattice site. In Sec. Il we describe the dynamics of a single
teraction of vortices in a system of two coupled fibglrs 3], lattice and its units for a given reaction kinetics. We prove its
fluxons in a system of coupled Josephson junctigisthe  multistability, allowing a wealth of stable steady patterns.
competition between stationary Turing patterns with travel-Changing the coefficient of diffusion between the intralattice
ing waves in isothermal single-phase chemical systgshs units, we find that multistability of different wave patterns is
the interaction of spiral waves in two-layer cellular neuralalso possible, including the coexistence of “excitable” and
networks[6], etc. In spite of their different physical origins, “oscillatory” spiral waves that are actually realizable ac-
the process of their interaction should have common, UniVercording to the Speciﬁc choice of initial Conditiom'sc‘)_ In
sal_features. This can be _estgblished by usir_lg two coupledecs. |V and V, we study a two-layer structure with two
lattices or subsystems, which is also a three-dimensional layperacting lattices. We prove that for certain conditions there
ered structure. Thus, in particular, we consider a system g,y he synchronization of all kinds of global motions in the
two _ Interacting, ~two- dimensional !atupes of reS|st|ve_|y layers. We provide a few illustrative examples of this syn-
coupled electronic units, each of which is known to proV'dechronization, demonstrating how pattern interaction occurs

an active.discrete medium 'for generating stat_ionary patternsDetween the layers and how different types of rotating spiral
[7,8], various types of nonlinear waves including wave fronts )
waves compete with each other.

[7,9], pulses and pulse trairi8,10], target waves and rotat-
ing spirals[11,17, spatial disordef7] and spatiotemporal
chaos[13]. The resistive(diffusive) connection between the
units allows one to treat such a lattice as a discrete analog of Il. MODEL
a multispecies reaction diffusion system. The “reaction ki-
netics” in this case is defined by the dynamics of the single In view of what follows let us consider a system of two
electronic unit. We choose here a unit described by a thirdeoupled identical lattices where the interlattice interaction
order system with a number of parameters allowing a richhetween nearest neighbors is a “point by point” resistive
variety of dynamic behaviors from simple stable steadycouplingh, as shown in Fig. 1. Each site is occupied by an
states to complex chaotic oscillatiofist,15. By varying the  electronic circuit, the unit or element. The number of such
“kinetics,” the lattice of electronic units can be considered units isNX N, and they are also resistively coupled between
nearest neighboréntralattice coupling coefficienD). The
dynamics of these two coupled lattices is described by the
* Author to whom correspondence should be addressed. following equations:

1063-651X/98/58)/176410)/$15.00 PRE 58 1764 © 1998 The American Physical Society



PRE 58 PATTERN INTERACTION AND SPIRAL WAVES INA.. .. 1765

havebistableandexcitableproperties. Changin allows us

to proceed from a dynamical system to a spatially extended
one and its space-time dynamics. Then in the lattice we
choose either pattern formatioimo wave$ or (excitable
wave behavior. For the purpose of our research here, we take

a=25, B=05, =001, a=15 b;=b,=b=2.
(©)

This choice provides an interesting behavior of the unit or
reaction kinetics, as we shall see later on. Consequently, in
what follows we restrict consideration to the case of varying
diffusion coefficient and interlayer coupling only. Thus we
first study the dynamical system corresponding toabtve

unit before proceeding to the space-time dynamics of one
and two coupled lattices. Then there are three steady states
(fixed pointg in the phase space of the unit:

O(0,0,0), P+(X0,y0,20), P_(_XO!_yOl_ZO)!

FIG. 1. Schematic diagram of the two-layer structure and of thewith
electronic unit here used as antiveelement in each lattice.

(o pralytp) o (bta)y
X =yl =X = (X 1+ Di(AXY); [y + B+ D] YO [yb+ BB+’
+h(Xj2,k_Xj1,k)a 2 :_ﬂ
° [yb+B+DY

Y= xt, —yt
LTk Tk ke For the chosen parameter values, the “outer” poftsand

P~ are stable foci, while the origi® is a saddle. Thus we

Zl = — Byl — ’yZ;L . . . . . . .
ik ik ik have bistable reaction kinetics. By varying the intralattice
> 5 5 5 ) diffusion coefficientd, andD,, we show in Sec. Il that for
Xj k= alyj =X} = TG0 1+ Da(Ax9) (1) such a unit a single latticéa layej represents a discrete
1 5 medium capable of exhibiting stable steady spatial structures
TG =X W), and a variety of spiral wave patterns.
yjz,k:ij,k_yjz,k+ ij,k’ lIl. PATTERNS AND WAVES IN A SINGLE LATTICE

2 g2 a2 Let us consider the dynamics of a single lattibe=0). It
Z = - Zj s L

1= TR YAk is given by the system:

ik=12,...N, :
Xj k= alYj k= Xjk— (X )1+ D(AX); k.,

where the superscripts 1 and 2 denote the variables of the .

first and the second lattice, respectivelgw);  is the dis- Yik=Xj k= YiktZks (4)
crete Laplace operator

. Z',k: _By',k_ ’)’Z"k,

(AW)j k=Wt Wj gt Wy er 1 W1 — 4w s . . .

D, andD, are generally differenty characterizes the inter- 1 k=1.2,... N.
lattice or interlayer coupling which we also consider diffu-
sive; andf(x) is the three-segment piecewise-linear function A. Pattern formation: regular and chaotic patterns
[14] To show the possibility of pattern formation in the lattice,
b;x—a—b, if x=1 we note that systert¥) has 2% stable steady states when its
) parameters are located in the domd@y, defined by the
f(x)=7 —ax if —1<x<1 (2 inequality[23]
b,x+a+b, if x<—1,
D<D*:a[a(7+ﬁ)—ﬁ)(7b+ﬁ(b+ 1)] 5
with a>0 andbq,b,>0. The other parameters of the sys- 4(y+B)[B+(v+B)(a+2b)] °
tem, a, B, andy, are also taken positive. We assume zero-
flux (Neumanmn boundary conditions for each layer. For the parameter séB), the critical value of the diffusion

We fix the parameters of the unit, hence we fix the reaccoefficient isD* ~0.15. Each of these states defines a steady
tion kinetics of our discrete resistive-diffusive system topattern in the{7? R} state space. Moreover, every pattern
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can be coded b XN matrix of two symbolgfor example,
0 and 23, and any givenNXN matrix defines a possible
spatial configuration of the pattern. Thus there exists ¢
wealth of possible spatial patterns from simple homoge-
neous, periodic, regular to disordered, or spatially chaotic
Low enough diffusiofEq. (5)] implies the bistable character
in the spatial distribution of the speci¢state variablgsin =0
the lattice. The coordinatesx{{,,yjx.z) of the steady
states are located in neighborhogdabsorbing domainsy

of the fixed pointsP*(Xg,Y0,20) and P~ (—Xq,— Yo, — Zo)

of the unit at each site.

Solving the eigenvalue problem for the steady state solu
tion of Eq. (4), we find that for the chosen parameter values
[Eq. (5)] each state is locally asymptotically stable. Thus, for °
weak enough intralattice diffusio® [Eq. (5)], the lattice
with the chosen “bistable kinetics” exhibits a large number
of stable steady patterns. The bistable character of the “spe
cies” distribution along the lattice makes any two-
dimensional black0) and white(1) picture a steady pattern.

t=40

B. Spiral wave patterns

Let us consider how different spiral waves occur in th
lattice for our reaction kinetics with high enough intralattice
diffusion D, thus leaving the domain of pattern formation &
[Eq. (5)]. In a similar context but for different kinetics from =65 =100
that chosen here, a number of spiral wave patterns have been

observed in a single lattice of the same electronic units FIG. 2. Evolution of a “bright” excitablespiral wave following
[11,17. the rupture of the plane wave front. Intralattice diffusids-0.8.

1. “Dark” and “bright” spiral waves excitable spirals for the same parameter values. Note that we
An array (chain of electronic units in the described have considered only the simplest, basic types of spiral

bistable mode supports a variety of stationary pulses anwa;/esf' Morﬁ complex wave fpatternﬁ can alllsr(]) be excited,
pulse trains including complex or chaotic profiles. Very'(?.C udln_g those obf[alned r(‘)‘m the m,L,’ tihump  one-
much like in optical fiberssee, e.g., Ref[24]) there are |me_nS|onaI pulse trairnd.0] and “multiarmed” spiral wave
“dark” and “bright” pulses propagating along the “back- solutions[17].
ground” homogeneous stat®" andP~, respectively. The
solution {x;(t),y;(t),z(t)} corresponding to a pulse in the
chain defines a plane wave solutiofx;  =Xx;(t),y;« When a unit exhibits a limit cycle the lattice behaves like
=Y;(1),z x=7(t)} in the two-dimensional lattice. an oscillatory medium. Periodic trains in the one-
Let us take the plane wave corresponding to a singlalimensional1D) case(chain, and target patterns and oscil-
bright pulse of the one-dimensional chain, and break thidatory spirals in a 2D system, are examples of the typical
front at some instant of tim@=ig. 2). Similarly to the waves processes in such a mediJ7]. The spirals in an oscilla-
in excitable medi§17,18 the edge of the front starts to twist tory medium look rather different from those found in excit-
and after some time forms a stationary spiral wave of brightible system$19]. In an oscillatory medium at each point
type (see the sequence of pictures in Fig. Pue to the (here a lattice sifg the system is oscillating around the same
reflection symmetry of the system, there can be dark spiralémit cycle of the reaction kinetics. Diffusion provides a glo-
having originated from dark plane pulses. Figure 3 illustratedal phase coherence of the local oscillations, hence the spiral
a fully developed spiral rotating around its core. As in otherwave[16,19. On purpose, the chosen reaction kinefiegs.
excitable media, the core consists of unexcited cells, whil€¢2) and (3)] does not have a limit cycle, as it operates only
the other cells exhibit time-periodic, phase-shifted pulses awith two stable fixed points. However, we have found that
shown in Figs. &) and 3c). Note that the lattice supports lattice (4) with Egs.(2) and(3) supports spiral waves which
the spiral waves only when diffusioD is strong enough. behave like the waves of an oscillatory medium. Figure 4
Due to Eq.(5), when decreasing diffusion the spiral wave illustrates the fully developed oscillatory spiral obtained in
yields to a steady pattern. the lattice for the same kinetics and diffusion coefficient as
Thus, for the parameter s@) which provides the bistable for the excitable waves described in Sec. 1l A. The behavior
mode of the electronic unit and for strong enough intralatticeof the spiral core and phase-shift relations between the other
diffusion, the lattice is indeed a discrete reaction diffusioncells are illustrated in Figs.(d) and 4c). A cell near the core
medium with two excitable states. It follows from the sym- [Fig. 4(c)] oscillates(dashed curvewith the same period and
metry of functionf(x) [see Eq(3)] that the two states have slightly smaller amplitude than the other celfolid curve.
equivalent properties allowing in the lattice dark and brightThis type of spiral wave can be obtained, for example, when

2. Oscillatory spiral waves
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FIG. 4. Fully developedscillatory spiral wave forD=0.8. (a)
FIG. 3. Fully developed excitable spiral wave @r=0.8.(2) 1, A snapshot X variable of the wave.(b) Space-time diagram of the
2, and 3—snapshotsx(variable of the wave rotating around its section of the lattice along=32. (c) Oscillations of an element
core. (b) Space-time diagram of the section of the lattice alpng near the spiral corédashed curverelative to the oscillations of the

=32.(c) Oscillations of an element far away from the spiral core. other units(solid curve. Units according to adimensionalization in
Units according to adimensionalization in E¢4). Egs. (4).

studying wave reentry in the two-layer system, as we show The behavior of the map for different valuesinf, taken
in Sec. IV. What mechanism underlies the oscillatory spiralas a control parameter from s@, is shown in Fig. a). A
wave in a medium which has a nonoscillating reaction kinet-saddle-node bifurcation occurs in the system for a certain
ics? value ofb,. The map in case 1 has a stable fixed point, hence
the unit exhibits limit cycle behavior. Figurgl shows its
time evolution. Then the lattice in this case actually repre-
sents an oscillatory medium. Further increasing the values of
b,, the fixed point disappears, and the map is described by
Let us show that possible oscillatory motions in the third-cyrye 3[Fig. 5@)]. Then the trajectories of the system can
order phase space of the unit can be described by a 1D Poigtay for a rather long time near the location of the limit cycle
carereturn map. To derive this map, a procedure similar topefore decaying to one of the two stable steady pdiFi.
that described in Ref25] can be used. 5(c)]. Such a long timgmetastablg oscillatory behavior is
Let us choose the plane=1 as a Poincarsurface in the  very much like the laminafperiodio stage in intermittency
3D phase space of the unit. Just taking the points of the2g]. The intralattice diffusion acting as a “rigid” mecha-
intersection of a unit trajectory when it leaves the linear renjsm profits from such long lasting local oscillations, to pro-
gion [x|>1, we obtain a 2D return map. All these points vide “global coherence” to the units, hence the self-
forming the 2D map are located very near to some lige  sustained oscillatory spiral wave. How long the metastable
This line is the intersection of the two-dimensional stablepscillations must lasthow far can the map stand from the
manifold (plane of the steady stat® ™ and the planex=1.  bifurcation point[Fig. 5a)]) is defined by the ratio between
In other words, while traveling within the region>1, the  the characteristic time scale of the local oscillations[Fig.
trajectories of the unit come very near to the manifold wherg(c)], and that of the diffusionsp. The time 75 can be
crossing the secant plaxe=1. This allows us to character- estimated, for example, from the velocity of the plane
ize possible_oscillatory motions of the unit by a 1D Poincarewave fronts propagating for a given diffusion coefficiént
return mapS=h(S), whereS accounts for they coordinate [10]. For the parameters of Fig. 4, we hamg~ 1. Then the
of the points of the lingég. The functionh(S) is derived by relation << r_ allows the diffusion to create the oscillatory
a numerical integration of the equations describing the unitspiral wave as a coherent oscillation of the units, without the

3. Metastable periodic behavior of the excitable unit
as a possible origin of the oscillatory properties of the medium
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o0 among the initial conditions a disordered state is less prefer-
able, hence the loser.

2l

0.08

0.06]- A. Mutual synchronization of motions in the coupled
two-layer system
0.04

Let us introduce new variables as follows:

0.02 _yl 2 gl 2 _ 1 _ 2
Ui k=Xj k= Xk Vik=Yjk  Yike Wik=Zk—Zjk»

0'030'3 602 004 006 008 0.0
(@
s Their evolution is described by the system

+ _ 1 2 + _ .1 2 + _ .1 2
Ui k=Xik T Xk Uik Yk ik Wjk=ZkTZjk-

: +
10 uj,k:a’[vj,k_uj,k_G(uj,kvuj,k)]

+D+(Au)j'k+ Di(AU+)jyk_2hUj’k,

Vj k= Uj k= U kT Wj ks

3 t
20 40 60 0 100 .
®) Wj k=~ Buj k= YWk,
15 N
X UIKZ a[U;k_u;ryk_G+(uJ"k,u;k)]
10
+D+(AU+)j’k+D7(AU)]"k, (6)
5
4+t + +
[ v],k_uj,k_vj,k+wj,k’
-5) .
4 t gt ot
W@ fTho Wi k= = BUj T YWk,
(©) .
j.k=1,2,... N,
FIG. 5. (a) One-dimensional Poincareturn map characterizing )
oscillatory behavior of the unit near the saddle-node bifurcation.with
Curve 1:b,=0.1; curve 2:b,=0.148; curve 3b,=0.2. (b) Time
evolution of the limit cycle corresponding to the fixed point of map D= D:—D; D*= D:+D;
1. (c) Typical periodiclike time evolution for map 3 displaying a B 2 B 2
long lasting, metastable, periodiclike behavior. Units according to
adimensionalization in Eq$4). G(Uj,k ,u;k) — f(le,k) _ f(sz,k)’
units themselves being in a true limit cycle. A similar argu- G*(y LU =FOd )+ ).
ment underlies earlier numerical results reported in Refs. o s :
[11,12. 1. Identical layers(D,;=D,=D)

Note, that for our reaction kinetid€q. (3)] (b,=b=2),
the map stands quite far from the bifurcation point, and It follows from Egs.(6) that whenD,=D,=D, a syn-
hence the oscillations of the unit decay rather quickly. How-chronization manifold defined byM={u; =v;=W;x
ever, since the characteristic period of the periodiclike oscil=0. J,.k=1,2,... N} exists in the phase space of system
lations is rather lon§iT~ 15 from Figs. %b) and 5c)], just a (6). It can be provedsee the Appendix for detajlshat for
few periods are enough for the relatieg<<7_ to be satis-
fied, and hence to create and sustain an oscillatory spiral
wave actually observed in the numerical simulati¢fig. 4).

h>aa (7)

the manifoldM is globally asymptotically stable. Therefore,
any initial conditions in the identical coupled layers tend to

IV. LAYERED STRUCTURE WITH TWO the manifoldM, where the synchronized motions are gov-
COUPLED LATTICES erned by system4), describing the dynamics of a single
lattice.

Let us now consider the layered systét) when the in-
terlayer interaction is switched orh$0). We shall show
how, during their time evolution, thénutua) interaction
between two subsystems, one organized in a given form and Consider systen(6), with a small parameter=1/h<1
the other spatially disordered, leads to replication of the fornrepresenting the coefficient of the derivativg,. In this
in the initially disordered subsystem. There will be a casecase the motions of Eqé5) have both fast and slow features
when these two competing states are at about the same p@&7]. In the phase space there exists a stable surface of slow
tential; the initial conditions determine the winner, and motions, and all trajectories of Eq&) after some time be-

2. Layers with different diffusion coefficients P~ D,
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FIG. 6. Mutual synchronization of two steady patterns of regular
spatial profiles. Parameter valugs; =D,=0.15 andh=23.75. (a)
and(b) Initial patterns(c) and(d) Synchronized patterns displaying
a new common spatial form.

FIG. 7. Replication of form when two lattices are coupled. Pa-
rameter valuesD;=D,=0.14 anch=23.75.(a) Patterned stimulus.
(b) Disordered pattern(c) and(d) Synchronized state. Both layers
exhibit a common and rather faithful copy of the stimulus.

come restricted within thin layersvhose thickness is of or-
der of ) near this surface. This coincides with the synchro-
nization manifold M. Then whenu=0 the approximate
system of slow motions is given by systdd) with the in-
tralattice diffusionD*=(D;+D,)/2. Hence forh—o the
motions occur in two stages. Any initial conditions in the
first (fast stage rapidly come to the stable surface of slo
motions(synchronization manifoldi1). In the secondslow)
stage, motions are governed by systeln defining the dy-
namics of the single lattice witb=D*, and tend to an
attractor of this systerfa pattern or a spiral waye

assume that one layer is in such a disordered pattern, while
the second layer carries an “encoded” structure as a stable
steady pattern, given as a stimulus. As the result of the in-
terlattice interaction, there israplication of form It appears
as if such a disordered state is enslaved by the form of the
patterned stimulus. The rationale behind this result is the
Wfollowing. Inequalities(5) and (7) demand that the intralat-
tice couplingD be weak enough, while the interlattice cou-
pling h is strong enough. Because each lattice element is
bistable the overall interaction can be considered as a com-
petition between two possible locally stable states. Then the
small, but non-negligible, value db provides the initial
B. Pattern synchronization and replication of form condition for this competition. For instance, the elements
taken from the pattern carrying a regular form may have
predominance over those of the disordered pattern. Accord-
ingly, both competing states are at the same potential; the
initial conditions determine the winner, and among the initial
conditions a disordered state is less preferable, hence the

o _ . Noser. Figure 7 illustrates this process in the two-layer lattice.
chronization of two different regular patterfisigs. da and Figures Ta) and db) show initial states of the layers. The

6(b)]. Itis also a regular, steady pattdffigs. dc) and &d)], self-replicated, synchronized patterns are shown in Fi@s. 7

identical for both layers. Note that the terminal state of eacl"ljmd 7d). They are quite faithful copies of the initial regular

!a;tlice exhibits a new spatial form quite different from the form. The replication process can be considered as a kind of
initial patterns. This is a new quality born from the aumno'competitionbetween the initial patterr28,29
mous evolution of the corresponding dynamical system. o

Hence the synchronization process can be considered as a
form of global self-organizationin the three-dimensional
structure of two coupled lattices. Let us consider systertl), when each layer taken inde-
When a single lattice is in a steady, spatially disorderecbendently can support different spiral wave pattésee Sec.
pattern, it can be treated as a kind of “raw material.” Let uslll B). The investigation of interactions and control of rotat-

When the diffusion coefficient®;=D,=D belong to
domain (5), condition (7) ensures the synchronization of
steady patterns in systefi). The two layers initially con-
taining different steady patterns evolve to a state with a com
mon steady pattern. Figure 6 illustrates the result of the sy

C. Controlled spiral waves in the two-layer system
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FIG. 9. Time sequence illustrating the transformation oban
3 cillatory spiral into a brighexcitablespiral wave. Parameter values:
=200 k (=350 k D1:D2208 andh=1.

ral. Synchronization occurs rather quickly. The sequence of
FIG. 8. Time sequence illustrating the appearance afswilla-  snapshots given in Fig. 8 shows the development of the spi-
tory spiral wave pattern as the result of the mutual interaction of arral wave in the synchronized layers. As in the case of inter-
excitablespiral wave with the unexcited homogeneous state. Pagcting steady patterns, the interlayer interaction leads to the
rameter valuesD;=D,=0.8 andh=1. appearance of a wave pattern of new form. It represents a
large scale spiral wave of thescillating type (see Sec. Il
ing spirals in reaction diffusion systems is of potential inter-B). Hence the discrete medium, in fact, changes its properties
est, in particular in biology and medicine, when studyingfrom the excitable to the oscillatory reaction kinetics as the
arrhythmias and fibrillation in heart muscle fib¢ds], dif- result of the interlattice interaction.
ferent reentry phenomeri&ef. [3] and references thergin The second example for illustration of wave pattern reen-
etc. try is the interaction of a large scatescillating spiral in the
Let the first layer of systeril) exhibit a brightexcitable first layer with the homogeneous rest state in the second.
spiral wave(Fig. 8), while all elements of the second layer Figure 9 shows the initial distribution and snapshots of the
are in the rest statd® . At a given instant of time we switch synchronized motions in the layers. The resulting wave pat-
on the interlayer coupling. Its strength is chosen high tern represents a brighexcitable spiral. Thus again there
enough to provide synchronization between the layers. Comccurs an inversion of the properties of the medium when the
dition (7) gives an upper value to the coupling coefficient. elements initially oscillatorysee Figs. &) and 4c)] return
The actual (numerically obtained value appears to be to the excitable behavigsee Figs. @) and 3c)]. The inter-
smaller, and depends on the kind of synchronizing motionsaction of bright and oscillating spiralsee Fig. 1Dleads to
The interaction provides the entry of the excitation to thethe appearance of a synchronized, “dark” spiral wave pat-
initial rest layer, and back to the layer with the rotating spi-tern.
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FIG. 11. Replication of a spiral wave patter@ Initial dark
excitablespiral wave forD;=2.5. (b) Steady, spatially disordered
state forD,=0.14.(c) and (d) Synchronized stateh(=10) repre-
senting the spiral wave of the same type as the initial stimulus
which behaves like the spiral in the lattice with~1.3.

diffusion coefficientD*=(D;+D,)/2. It appears to be
smaller than for the initial wave.

What about the dynamic properties of the layers? Before
they interact we have two different layers. The first one with

. . . .. rather strong diffusion describes a medium suitable only for

. FIG. 10. Time sequence illustrating the reentry of the two dif-y - o ing we?ves, while the second one with weak diffugion
erent types of spiral waves. Parameter values=D,=0.8 and . .
he1. could exhibit only steady patterns. The synchronized layers
represent, in fact, a single lattice with the diffusibri, un-
able to hold inhomogeneous steady patterns but keeping,
however, the capability for spiral waves. Thus, suitably

Let us consider the interaction of a spiral wave in onechoosing the diffusion coefficien®, andD, in each layer,
layer with an inhomogeneous steady pattern in the othetwe can control the dynamics of the resulting, synchronized
This may occur when the intralattice diffusion coefficientsdiscrete medium. It is possible, for example by decreasing
have largely different values. To have a steady pattern in @, in the first layer, to cause propagation failure of the spiral
layer, diffusion must be weak enougfq. (5)] while travel-  in the synchronized state when the diffusion coefficierit

ing waves occur for high enough valuesf(Sec. Ill B). It s not strong enough to support traveling waves.
follows from the results presented in Se¥. A 2 that the

mutual synchronization of two layers with largely different V. CONCLUSION

diffusion coefficients requires a very strong interlattice cou-

pling, h—oo. Figure 11 illustrates the interaction of a disor-  In summary, we have shown that in lattices of excitable
dered steady pattefirig. 11(a)] and a dark spiral wavirig.  €lements, e.g., modeled by a bistable electronic [u}:

11(b)] for h=10. The layers become almost synchronized, (i) Steady patterns are possible for weak enough intralat-
and exhibit the same spiral waves. This situation is similar tdice diffusion. There is a highly diverse variety’\(za of pos-

the replication of steady patterns in identical layers. But nowsible pattern profiles including stable, spatially disordered
the lattice initially in the disordered steady state replicatesteady patterns.

the spiral wave, which is a traveling, rotating pattern. The (ii) When the intralattice diffusion is strong enough, a
resulting spirals differ from the original wave. They becomelattice is capable of supporting excitable spiral waves of
“narrower” [Figs. 11c) and 11d)] as the approximate sys- “dark” and “bright” types. They naturally originate from
tem describing the synchronized sté8ec. IV A 2 has the excitable single pulses. Although the units in the lattice do

D. Pattern and wave interaction. Replication of spiral waves
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not possess limit cycle behavior, as they have long lastingons for the functiorE}\szle,k also to be positive definite.
(metastable periodiclike stages the lattice can also supportThe piecewise linear ter@ satisfies the relation
oscillatory spiral waves very much like spiral waves in true
oscillatory media.
(iii) The interaction between two such lattices with excit- u; «G(u; kank)z_anzk, Vj,k=1,...N.
able, bistable units leading to their mutual synchronization ' T ’
yields the possibility of replicating steady, regular, and dis-
ordered patterns, as well as wavelike behavior including 0sgence
cillatory and excitable spiral waves typical of reentry pro-
cesses in 3D reaction-diffusion system.

N
2
) P;,k?kEl {puf = Duj (Uj gt Uj U1
k=

N
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Consider the vectorz=(z;,2,, ...,zZy2), Where z;
APPENDIX: GLOBAL STABILITY OF THE =Uq1,Zp=Uqg, . ..,Zy2=Uyn- BY using the components of
SYNCHRONIZATION MANIFOLD the vectorz, the functionP takes the quadratic form
To prove the global stability of the synchronization mani-
fold M, we consider the Lyapunov function N2
1 2 a F):i,j2:1 ajjzz=2'Az,
V: EJ’I(E:]_ uj’k+avj’k+ ij,k y
whose derivative with respect to E@®) is wherea;; =a;; , the superscripT denotes the transpose, and
N A=|la;j|| is a square symmetritl>x N? matrix. The qua-
' dratic form P will be positive definite if the eigenvalues of
— 4+ 0. . . )
v j,kzzl (Piact Qi) (A1) the symmetric matrixA are positive(see Ref[30], p. 74.

. Applying Gershgorin theorerf81] to the matrixA, we find
with that if p>4D then the union of the Gershgorin disks corre-
_ 2 N sponding to the matriA is located to the right of the imagi-
Pjk=(2h+4D)uj , + au;  G(uj i, uj ) nary axis. Therefore, the inequalibz> wa ensures the posi-

— DU (Uj1gF Uj g1 Up s gt Uj s n), tiveness of all eigenvalues of the matAx and the fornP is
a positive definite quadratic form for conditiog). Then,

, ay using Eq.(Al), it follows that outside the manifolt1 the
Qju=a(Uj v+ B ik inequality V<0 is satisfied, an&/=0 in the manifold. Thus

the synchronization manifol is globally asymptotically
Then allQ; (s are positive definite. Let us find the condi- stable.
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