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Pattern interaction and spiral waves in a two-layer system of excitable units
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A system composed of two coupled lattices, hence a layered structure, is studied when the unit at each site
is an active electronic circuit possessing two accessible stable steady states. In the absence of interlattice
coupling, each lattice taken separately represents a discrete, reaction diffusion system. We show that, depend-
ing on the strength of the diffusion coefficient, each lattice may exhibit either a wide variety of stable steady
patterns or a number of different wave patterns including rotating spirals. Moreover, for fixed reaction kinetics
each lattice can exhibit spiral waves of bothexcitableand oscillatory type. For nonoscillating kinetics, the
metastable periodiclike behavior of the unit is at the origin of the oscillatory spirals. From initially different
global patterns or waves in each lattice, the interaction may lead to synchronization and hence a new~con-
trolled! form and the replication of a given one. We also show how there is reentry of spiral waves between the
two coupled layers associated with the ‘‘competition’’ of theiroscillatoryandexcitablespiral wave properties.
@S1063-651X~98!08808-4#
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I. INTRODUCTION

Interaction of patterns~steady and traveling wave pa
terns! is an important, widespread problem in various phy
cal, chemical, and biological systems. Examples are the
teraction of vortices in a system of two coupled fibers@1–3#,
fluxons in a system of coupled Josephson junctions@4#, the
competition between stationary Turing patterns with trav
ing waves in isothermal single-phase chemical systems@5#,
the interaction of spiral waves in two-layer cellular neu
networks@6#, etc. In spite of their different physical origins
the process of their interaction should have common, univ
sal features. This can be established by using two cou
lattices or subsystems, which is also a three-dimensional
ered structure. Thus, in particular, we consider a system
two interacting, two-dimensional lattices of resistive
coupled electronic units, each of which is known to provi
an activediscrete medium for generating stationary patte
@7,8#, various types of nonlinear waves including wave fron
@7,9#, pulses and pulse trains@3,10#, target waves and rotat
ing spirals @11,12#, spatial disorder@7# and spatiotempora
chaos@13#. The resistive~diffusive! connection between th
units allows one to treat such a lattice as a discrete analo
a multispecies reaction diffusion system. The ‘‘reaction
netics’’ in this case is defined by the dynamics of the sin
electronic unit. We choose here a unit described by a th
order system with a number of parameters allowing a r
variety of dynamic behaviors from simple stable stea
states to complex chaotic oscillations@14,15#. By varying the
‘‘kinetics,’’ the lattice of electronic units can be considere

*Author to whom correspondence should be addressed.
PRE 581063-651X/98/58~2!/1764~10!/$15.00
-
n-

l-

l

r-
ed
y-
of

s
s

of
-
e
-

h
y

as a qualitative model to simulate various features of an
tive medium@16–22#.

The paper is organized as follows. In Sec. II, we introdu
the model problem, and give details of a unit or element i
lattice site. In Sec. III we describe the dynamics of a sin
lattice and its units for a given reaction kinetics. We prove
multistability, allowing a wealth of stable steady pattern
Changing the coefficient of diffusion between the intralatt
units, we find that multistability of different wave patterns
also possible, including the coexistence of ‘‘excitable’’ a
‘‘oscillatory’’ spiral waves that are actually realizable a
cording to the specific choice of initial conditions~i.c.!. In
Secs. IV and V, we study a two-layer structure with tw
interacting lattices. We prove that for certain conditions th
may be synchronization of all kinds of global motions in t
layers. We provide a few illustrative examples of this sy
chronization, demonstrating how pattern interaction occ
between the layers and how different types of rotating sp
waves compete with each other.

II. MODEL

In view of what follows let us consider a system of tw
coupled identical lattices where the interlattice interact
between nearest neighbors is a ‘‘point by point’’ resisti
couplingh, as shown in Fig. 1. Each site is occupied by
electronic circuit, the unit or element. The number of su
units isN3N, and they are also resistively coupled betwe
nearest neighbors~intralattice coupling coefficientD). The
dynamics of these two coupled lattices is described by
following equations:
1764 © 1998 The American Physical Society
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ẋ j ,k
1 5a@yj ,k

1 2xj ,k
1 2 f ~xj ,k

1 !#1D1~Dx1! j ,k

1h~xj ,k
2 2xj ,k

1 !,

ẏ j ,k
1 5xj ,k

1 2yj ,k
1 1zj ,k

1 ,

żj ,k
1 52byj ,k

1 2gzj ,k
1 ,

ẋ j ,k
2 5a@yj ,k

2 2xj ,k
2 2 f ~xj ,k

2 !#1D2~Dx2! j ,k ~1!

1h~xj ,k
1 2xj ,k

2 !,

ẏ j ,k
2 5xj ,k

2 2yj ,k
2 1zj ,k

2 ,

żj ,k
2 52byj ,k

2 2gzj ,k
2 ,

j ,k51,2, . . . ,N,

where the superscripts 1 and 2 denote the variables of
first and the second lattice, respectively; (Dw) j ,k is the dis-
crete Laplace operator

~Dw! j ,k5wj 11,k1wj 21,k1wj ,k111wj ,k2124wj ,k ;

D1 andD2 are generally different;h characterizes the inter
lattice or interlayer coupling which we also consider diff
sive; andf (x) is the three-segment piecewise-linear functi
@14#

f ~x!5H b1x2a2b1 if x>1

2ax if 21,x,1

b2x1a1b2 if x<21 ,

~2!

with a.0 andb1 ,b2.0. The other parameters of the sy
tem, a, b, andg, are also taken positive. We assume ze
flux ~Neumann! boundary conditions for each layer.

We fix the parameters of the unit, hence we fix the re
tion kinetics of our discrete resistive-diffusive system

FIG. 1. Schematic diagram of the two-layer structure and of
electronic unit here used as anactiveelement in each lattice.
he

-

-

havebistableandexcitableproperties. ChangingD allows us
to proceed from a dynamical system to a spatially exten
one and its space-time dynamics. Then in the lattice
choose either pattern formation~no waves! or ~excitable!
wave behavior. For the purpose of our research here, we

a52.5, b50.5, g50.01, a51.5, b15b25b52.
~3!

This choice provides an interesting behavior of the unit
reaction kinetics, as we shall see later on. Consequently
what follows we restrict consideration to the case of vary
diffusion coefficient and interlayer coupling only. Thus w
first study the dynamical system corresponding to theactive
unit before proceeding to the space-time dynamics of
and two coupled lattices. Then there are three steady s
~fixed points! in the phase space of the unit:

O~0,0,0!, P1~x0 ,y0 ,z0!, P2~2x0 ,2y0 ,2z0!,

with

x05
~b1a!~g1b!

@gb1b~b11!#
, y05

~b1a!g

@gb1b~b11!#
,

z052
~b1a!b

@gb1b~b11!#
.

For the chosen parameter values, the ‘‘outer’’ pointsP1 and
P2 are stable foci, while the originO is a saddle. Thus we
have bistable reaction kinetics. By varying the intralatti
diffusion coefficientsD1 andD2, we show in Sec. III that for
such a unit a single lattice~a layer! represents a discret
medium capable of exhibiting stable steady spatial structu
and a variety of spiral wave patterns.

III. PATTERNS AND WAVES IN A SINGLE LATTICE

Let us consider the dynamics of a single lattice (h50). It
is given by the system:

ẋ j ,k5a@yj ,k2xj ,k2 f ~xj ,k!#1D~Dx! j ,k ,

ẏ j ,k5xj ,k2yj ,k1zj ,k , ~4!

żj ,k52byj ,k2gzj ,k ,

j ,k51,2, . . . ,N.

A. Pattern formation: regular and chaotic patterns

To show the possibility of pattern formation in the lattic
we note that system~4! has 2N

2
stable steady states when i

parameters are located in the domainDch defined by the
inequality @23#

D,D* 5
a@a~g1b!2b!~gb1b~b11!#

4~g1b!@b1~g1b!~a12b!#
. ~5!

For the parameter set~3!, the critical value of the diffusion
coefficient isD* '0.15. Each of these states defines a ste
pattern in the$Z2,R% state space. Moreover, every patte
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can be coded byN3N matrix of two symbols~for example,
0 and 1!, and any givenN3N matrix defines a possible
spatial configuration of the pattern. Thus there exists
wealth of possible spatial patterns from simple homo
neous, periodic, regular to disordered, or spatially chao
Low enough diffusion@Eq. ~5!# implies the bistable characte
in the spatial distribution of the species~state variables! in
the lattice. The coordinates (xj ,k* ,yj ,k* ,zj ,k* ) of the steady
states are located in neighborhoods~‘‘absorbing domains’’!
of the fixed pointsP1(x0 ,y0 ,z0) and P2(2x0 ,2y0 ,2z0)
of the unit at each site.

Solving the eigenvalue problem for the steady state s
tion of Eq. ~4!, we find that for the chosen parameter valu
@Eq. ~5!# each state is locally asymptotically stable. Thus,
weak enough intralattice diffusionD @Eq. ~5!#, the lattice
with the chosen ‘‘bistable kinetics’’ exhibits a large numb
of stable steady patterns. The bistable character of the ‘‘s
cies’’ distribution along the lattice makes any tw
dimensional black~0! and white~1! picture a steady pattern

B. Spiral wave patterns

Let us consider how different spiral waves occur in t
lattice for our reaction kinetics with high enough intralatti
diffusion D, thus leaving the domain of pattern formatio
@Eq. ~5!#. In a similar context but for different kinetics from
that chosen here, a number of spiral wave patterns have
observed in a single lattice of the same electronic u
@11,12#.

1. ‘‘Dark’’ and ‘‘bright’’ spiral waves

An array ~chain! of electronic units in the describe
bistable mode supports a variety of stationary pulses
pulse trains including complex or chaotic profiles. Ve
much like in optical fibers~see, e.g., Ref.@24#! there are
‘‘dark’’ and ‘‘bright’’ pulses propagating along the ‘‘back
ground’’ homogeneous statesP1 andP2, respectively. The
solution $xj (t),yj (t),zj (t)% corresponding to a pulse in th
chain defines a plane wave solution$xj ,k[xj (t),yj ,k
[yj (t),zj ,k[zj (t)% in the two-dimensional lattice.

Let us take the plane wave corresponding to a sin
bright pulse of the one-dimensional chain, and break
front at some instant of time~Fig. 2!. Similarly to the waves
in excitable media@17,18# the edge of the front starts to twis
and after some time forms a stationary spiral wave of bri
type ~see the sequence of pictures in Fig. 2!. Due to the
reflection symmetry of the system, there can be dark spi
having originated from dark plane pulses. Figure 3 illustra
a fully developed spiral rotating around its core. As in oth
excitable media, the core consists of unexcited cells, w
the other cells exhibit time-periodic, phase-shifted pulses
shown in Figs. 3~b! and 3~c!. Note that the lattice support
the spiral waves only when diffusionD is strong enough.
Due to Eq.~5!, when decreasing diffusion the spiral wav
yields to a steady pattern.

Thus, for the parameter set~3! which provides the bistable
mode of the electronic unit and for strong enough intralatt
diffusion, the lattice is indeed a discrete reaction diffusi
medium with two excitable states. It follows from the sym
metry of functionf (x) @see Eq.~3!# that the two states hav
equivalent properties allowing in the lattice dark and brig
a
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excitable spirals for the same parameter values. Note tha
have considered only the simplest, basic types of sp
waves. More complex wave patterns can also be exci
including those obtained from the multihump on
dimensional pulse trains@10# and ‘‘multiarmed’’ spiral wave
solutions@17#.

2. Oscillatory spiral waves

When a unit exhibits a limit cycle the lattice behaves li
an oscillatory medium. Periodic trains in the on
dimensional~1D! case~chain!, and target patterns and osci
latory spirals in a 2D system, are examples of the typi
processes in such a medium@17#. The spirals in an oscilla-
tory medium look rather different from those found in exc
able systems@19#. In an oscillatory medium at each poin
~here a lattice site!, the system is oscillating around the sam
limit cycle of the reaction kinetics. Diffusion provides a glo
bal phase coherence of the local oscillations, hence the s
wave@16,19#. On purpose, the chosen reaction kinetics@Eqs.
~2! and ~3!# does not have a limit cycle, as it operates on
with two stable fixed points. However, we have found th
lattice ~4! with Eqs.~2! and~3! supports spiral waves which
behave like the waves of an oscillatory medium. Figure
illustrates the fully developed oscillatory spiral obtained
the lattice for the same kinetics and diffusion coefficient
for the excitable waves described in Sec. III A. The behav
of the spiral core and phase-shift relations between the o
cells are illustrated in Figs. 4~b! and 4~c!. A cell near the core
@Fig. 4~c!# oscillates~dashed curve! with the same period and
slightly smaller amplitude than the other cells~solid curve!.
This type of spiral wave can be obtained, for example, wh

FIG. 2. Evolution of a ‘‘bright’’ excitablespiral wave following
the rupture of the plane wave front. Intralattice diffusionD50.8.
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studying wave reentry in the two-layer system, as we sh
in Sec. IV. What mechanism underlies the oscillatory sp
wave in a medium which has a nonoscillating reaction kin
ics?

3. Metastable periodic behavior of the excitable unit
as a possible origin of the oscillatory properties of the medium

Let us show that possible oscillatory motions in the thi
order phase space of the unit can be described by a 1D P
caréreturn map. To derive this map, a procedure similar
that described in Ref.@25# can be used.

Let us choose the planex51 as a Poincare´ surface in the
3D phase space of the unit. Just taking the points of
intersection of a unit trajectory when it leaves the linear
gion uxu.1, we obtain a 2D return map. All these poin
forming the 2D map are located very near to some linel S .
This line is the intersection of the two-dimensional sta
manifold ~plane! of the steady stateP1 and the planex51.
In other words, while traveling within the regionx.1, the
trajectories of the unit come very near to the manifold wh
crossing the secant planex51. This allows us to character
ize possible oscillatory motions of the unit by a 1D Poinca´

return mapS̄5h(S), whereS accounts for they coordinate
of the points of the linel S . The functionh(S) is derived by
a numerical integration of the equations describing the u

FIG. 3. Fully developed excitable spiral wave forD50.8. ~a! 1,
2, and 3—snapshots (x variable! of the wave rotating around its
core. ~b! Space-time diagram of the section of the lattice alonj
532. ~c! Oscillations of an element far away from the spiral co
Units according to adimensionalization in Eqs.~4!.
w
l

t-

-
in-
o

e
-

n

e
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The behavior of the map for different values ofb2, taken
as a control parameter from set~3!, is shown in Fig. 5~a!. A
saddle-node bifurcation occurs in the system for a cer
value ofb2. The map in case 1 has a stable fixed point, he
the unit exhibits limit cycle behavior. Figure 5~b! shows its
time evolution. Then the lattice in this case actually rep
sents an oscillatory medium. Further increasing the value
b2, the fixed point disappears, and the map is described
curve 3 @Fig. 5~a!#. Then the trajectories of the system ca
stay for a rather long time near the location of the limit cyc
before decaying to one of the two stable steady points@Fig.
5~c!#. Such a long time~metastable! oscillatory behavior is
very much like the laminar~periodic! stage in intermittency
@26#. The intralattice diffusion acting as a ‘‘rigid’’ mecha
nism profits from such long lasting local oscillations, to pr
vide ‘‘global coherence’’ to the units, hence the se
sustained oscillatory spiral wave. How long the metasta
oscillations must last„how far can the map stand from th
bifurcation point@Fig. 5~a!#… is defined by the ratio betwee
the characteristic time scale of the local oscillations,tL @Fig.
5~c!#, and that of the diffusion,tD . The time tD can be
estimated, for example, from the velocityc of the plane
wave fronts propagating for a given diffusion coefficientD
@10#. For the parameters of Fig. 4, we havetD;1. Then the
relationtD!tL allows the diffusion to create the oscillator
spiral wave as a coherent oscillation of the units, without

.

FIG. 4. Fully developedoscillatory spiral wave forD50.8. ~a!
A snapshot (x variable! of the wave.~b! Space-time diagram of the
section of the lattice alongj 532. ~c! Oscillations of an elemen
near the spiral core~dashed curve! relative to the oscillations of the
other units~solid curve!. Units according to adimensionalization i
Eqs.~4!.
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units themselves being in a true limit cycle. A similar arg
ment underlies earlier numerical results reported in R
@11,12#.

Note, that for our reaction kinetics@Eq. ~3!# (b25b52),
the map stands quite far from the bifurcation point, a
hence the oscillations of the unit decay rather quickly. Ho
ever, since the characteristic period of the periodiclike os
lations is rather long@T;15 from Figs. 5~b! and 5~c!#, just a
few periods are enough for the relationtD!tL to be satis-
fied, and hence to create and sustain an oscillatory sp
wave actually observed in the numerical simulations~Fig. 4!.

IV. LAYERED STRUCTURE WITH TWO
COUPLED LATTICES

Let us now consider the layered system~1! when the in-
terlayer interaction is switched on (h.0). We shall show
how, during their time evolution, the~mutual! interaction
between two subsystems, one organized in a given form
the other spatially disordered, leads to replication of the fo
in the initially disordered subsystem. There will be a ca
when these two competing states are at about the same
tential; the initial conditions determine the winner, a

FIG. 5. ~a! One-dimensional Poincare´ return map characterizing
oscillatory behavior of the unit near the saddle-node bifurcatio
Curve 1:b250.1; curve 2:b250.148; curve 3:b250.2. ~b! Time
evolution of the limit cycle corresponding to the fixed point of m
1. ~c! Typical periodiclike time evolution for map 3 displaying
long lasting, metastable, periodiclike behavior. Units according
adimensionalization in Eqs.~4!.
-
s.

d
-
l-
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nd

e
po-

among the initial conditions a disordered state is less pre
able, hence the loser.

A. Mutual synchronization of motions in the coupled
two-layer system

Let us introduce new variables as follows:

uj ,k5xj ,k
1 2xj ,k

2 , v j ,k5yj ,k
1 2yj ,k

2 , wj ,k5zj ,k
1 2zj ,k

2 ,

uj ,k
1 5xj ,k

1 1xj ,k
2 , v j ,k

1 5yj ,k
1 1yj ,k

2 , wj ,k
1 5zj ,k

1 1zj ,k
2 .

Their evolution is described by the system

u̇ j ,k5a@v j ,k2uj ,k2G~uj ,k ,uj ,k
1 !#

1D1~Du! j ,k1D2~Du1! j ,k22huj ,k ,

v̇ j ,k5uj ,k2v j ,k1wj ,k ,

ẇj ,k52bv j ,k2gwj ,k ,

u̇ j ,k
1 5a@v j ,k

1 2uj ,k
1 2G1~uj ,k ,uj ,k

1 !#

1D1~Du1! j ,k1D2~Du! j ,k , ~6!

v̇ j ,k
1 5uj ,k

1 2v j ,k
1 1wj ,k

1 ,

ẇj ,k
1 52bv j ,k

1 2gwj ,k
1 ,

j ,k51,2, . . . ,N,

with

D2[
D12D2

2
, D1[

D11D2

2
,

G~uj ,k ,uj ,k
1 !5 f ~xj ,k

1 !2 f ~xj ,k
2 !,

G1~uj ,k ,uj ,k
1 !5 f ~xj ,k

1 !1 f ~xj ,k
2 !.

1. Identical layers„D15D25D…

It follows from Eqs. ~6! that whenD15D25D, a syn-
chronization manifold defined byM5$uj ,k5v j ,k5wj ,k
50, j ,k51,2, . . . ,N% exists in the phase space of syste
~6!. It can be proved~see the Appendix for details! that for

h.aa ~7!

the manifoldM is globally asymptotically stable. Therefore
any initial conditions in the identical coupled layers tend
the manifoldM , where the synchronized motions are go
erned by system~4!, describing the dynamics of a singl
lattice.

2. Layers with different diffusion coefficients D1ÞD2

Consider system~6!, with a small parameterm51/h!1
representing the coefficient of the derivativeu̇ j ,k . In this
case the motions of Eqs.~6! have both fast and slow feature
@27#. In the phase space there exists a stable surface of
motions, and all trajectories of Eqs.~6! after some time be-

.
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come restricted within thin layers~whose thickness is of or
der ofm) near this surface. This coincides with the synch
nization manifold M . Then whenm50 the approximate
system of slow motions is given by system~4! with the in-
tralattice diffusionD15(D11D2)/2. Hence forh→` the
motions occur in two stages. Any initial conditions in th
first ~fast! stage rapidly come to the stable surface of sl
motions~synchronization manifoldM ). In the second~slow!
stage, motions are governed by system~4!, defining the dy-
namics of the single lattice withD5D1, and tend to an
attractor of this system~a pattern or a spiral wave!.

B. Pattern synchronization and replication of form

When the diffusion coefficientsD15D25D belong to
domain ~5!, condition ~7! ensures the synchronization o
steady patterns in system~1!. The two layers initially con-
taining different steady patterns evolve to a state with a co
mon steady pattern. Figure 6 illustrates the result of the s
chronization of two different regular patterns@Figs. 6~a! and
6~b!#. It is also a regular, steady pattern@Figs. 6~c! and 6~d!#,
identical for both layers. Note that the terminal state of ea
lattice exhibits a new spatial form quite different from th
initial patterns. This is a new quality born from the auton
mous evolution of the corresponding dynamical syste
Hence the synchronization process can be considered
form of global self-organizationin the three-dimensiona
structure of two coupled lattices.

When a single lattice is in a steady, spatially disorde
pattern, it can be treated as a kind of ‘‘raw material.’’ Let

FIG. 6. Mutual synchronization of two steady patterns of regu
spatial profiles. Parameter values:D15D250.15 andh53.75. ~a!
and~b! Initial patterns.~c! and~d! Synchronized patterns displayin
a new common spatial form.
-

-
n-

h

-
.

s a

d

assume that one layer is in such a disordered pattern, w
the second layer carries an ‘‘encoded’’ structure as a sta
steady pattern, given as a stimulus. As the result of the
terlattice interaction, there is areplication of form. It appears
as if such a disordered state is enslaved by the form of
patterned stimulus. The rationale behind this result is
following. Inequalities~5! and ~7! demand that the intralat
tice couplingD be weak enough, while the interlattice co
pling h is strong enough. Because each lattice elemen
bistable, the overall interaction can be considered as a co
petition between two possible locally stable states. Then
small, but non-negligible, value ofD provides the initial
condition for this competition. For instance, the eleme
taken from the pattern carrying a regular form may ha
predominance over those of the disordered pattern. Acc
ingly, both competing states are at the same potential;
initial conditions determine the winner, and among the init
conditions a disordered state is less preferable, hence
loser. Figure 7 illustrates this process in the two-layer latti
Figures 7~a! and 7~b! show initial states of the layers. Th
self-replicated, synchronized patterns are shown in Figs.~c!
and 7~d!. They are quite faithful copies of the initial regula
form. The replication process can be considered as a kin
competitionbetween the initial patterns@28,29#.

C. Controlled spiral waves in the two-layer system

Let us consider system~1!, when each layer taken inde
pendently can support different spiral wave patterns~see Sec.
III B !. The investigation of interactions and control of rota

r
FIG. 7. Replication of form when two lattices are coupled. P

rameter values:D15D250.14 andh53.75.~a! Patterned stimulus.
~b! Disordered pattern.~c! and ~d! Synchronized state. Both layer
exhibit a common and rather faithful copy of the stimulus.
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1770 PRE 58NEKORKIN, KAZANTSEV, VELARDE, AND CHUA
ing spirals in reaction diffusion systems is of potential int
est, in particular in biology and medicine, when studyi
arrhythmias and fibrillation in heart muscle fibers@18#, dif-
ferent reentry phenomena~Ref. @3# and references therein!,
etc.

Let the first layer of system~1! exhibit a brightexcitable
spiral wave~Fig. 8!, while all elements of the second laye
are in the rest state,P2. At a given instant of time we switch
on the interlayer coupling. Its strengthh is chosen high
enough to provide synchronization between the layers. C
dition ~7! gives an upper value to the coupling coefficie
The actual ~numerically obtained! value appears to be
smaller, and depends on the kind of synchronizing motio
The interaction provides the entry of the excitation to t
initial rest layer, and back to the layer with the rotating s

FIG. 8. Time sequence illustrating the appearance of anoscilla-
tory spiral wave pattern as the result of the mutual interaction o
excitablespiral wave with the unexcited homogeneous state.
rameter values:D15D250.8 andh51.
-

n-
.

s.

-

ral. Synchronization occurs rather quickly. The sequence
snapshots given in Fig. 8 shows the development of the s
ral wave in the synchronized layers. As in the case of inte
acting steady patterns, the interlayer interaction leads to
appearance of a wave pattern of new form. It represent
large scale spiral wave of theoscillating type ~see Sec. III
B!. Hence the discrete medium, in fact, changes its proper
from the excitable to the oscillatory reaction kinetics as th
result of the interlattice interaction.

The second example for illustration of wave pattern ree
try is the interaction of a large scaleoscillating spiral in the
first layer with the homogeneous rest state in the seco
Figure 9 shows the initial distribution and snapshots of t
synchronized motions in the layers. The resulting wave p
tern represents a brightexcitable spiral. Thus again there
occurs an inversion of the properties of the medium when t
elements initially oscillatory@see Figs. 4~b! and 4~c!# return
to the excitable behavior@see Figs. 3~b! and 3~c!#. The inter-
action of bright and oscillating spirals~see Fig. 10! leads to
the appearance of a synchronized, ‘‘dark’’ spiral wave pa
tern.

n
-

FIG. 9. Time sequence illustrating the transformation of anos-
cillatory spiral into a brightexcitablespiral wave. Parameter values
D15D250.8 andh51.
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D. Pattern and wave interaction. Replication of spiral waves

Let us consider the interaction of a spiral wave in on
layer with an inhomogeneous steady pattern in the oth
This may occur when the intralattice diffusion coefficien
have largely different values. To have a steady pattern in
layer, diffusion must be weak enough@Eq. ~5!# while travel-
ing waves occur for high enough values ofD ~Sec. III B!. It
follows from the results presented in Sec. IV A 2 that the
mutual synchronization of two layers with largely differen
diffusion coefficients requires a very strong interlattice co
pling, h→`. Figure 11 illustrates the interaction of a diso
dered steady pattern@Fig. 11~a!# and a dark spiral wave@Fig.
11~b!# for h510. The layers become almost synchronize
and exhibit the same spiral waves. This situation is similar
the replication of steady patterns in identical layers. But no
the lattice initially in the disordered steady state replicat
the spiral wave, which is a traveling, rotating pattern. Th
resulting spirals differ from the original wave. They becom
‘‘narrower’’ @Figs. 11~c! and 11~d!# as the approximate sys-
tem describing the synchronized state~Sec. IV A 2! has the

FIG. 10. Time sequence illustrating the reentry of the two d
ferent types of spiral waves. Parameter values:D15D250.8 and
h51.
r.

a

-

,
o

s
e

diffusion coefficient D15(D11D2)/2. It appears to be
smaller than for the initial wave.

What about the dynamic properties of the layers? Bef
they interact we have two different layers. The first one w
rather strong diffusion describes a medium suitable only
traveling waves, while the second one with weak diffusi
could exhibit only steady patterns. The synchronized lay
represent, in fact, a single lattice with the diffusionD1, un-
able to hold inhomogeneous steady patterns but keep
however, the capability for spiral waves. Thus, suitab
choosing the diffusion coefficientsD1 andD2 in each layer,
we can control the dynamics of the resulting, synchroniz
discrete medium. It is possible, for example by decreas
D1 in the first layer, to cause propagation failure of the spi
in the synchronized state when the diffusion coefficientD1

is not strong enough to support traveling waves.

V. CONCLUSION

In summary, we have shown that in lattices of excitab
elements, e.g., modeled by a bistable electronic unit@14#:

~i! Steady patterns are possible for weak enough intra
tice diffusion. There is a highly diverse variety (2N2

) of pos-
sible pattern profiles including stable, spatially disorder
steady patterns.

~ii ! When the intralattice diffusion is strong enough,
lattice is capable of supporting excitable spiral waves
‘‘dark’’ and ‘‘bright’’ types. They naturally originate from
excitable single pulses. Although the units in the lattice

-

FIG. 11. Replication of a spiral wave pattern.~a! Initial dark
excitablespiral wave forD152.5. ~b! Steady, spatially disordered
state forD250.14. ~c! and ~d! Synchronized state (h510) repre-
senting the spiral wave of the same type as the initial stimu
which behaves like the spiral in the lattice withD'1.3.
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not possess limit cycle behavior, as they have long las
~metastable! periodiclike stages the lattice can also supp
oscillatory spiral waves very much like spiral waves in tr
oscillatory media.

~iii ! The interaction between two such lattices with exc
able, bistable units leading to their mutual synchronizat
yields the possibility of replicating steady, regular, and d
ordered patterns, as well as wavelike behavior including
cillatory and excitable spiral waves typical of reentry pr
cesses in 3D reaction-diffusion system.
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APPENDIX: GLOBAL STABILITY OF THE
SYNCHRONIZATION MANIFOLD

To prove the global stability of the synchronization ma
fold M , we consider the Lyapunov function

V5
1

2 (
j ,k51

N H uj ,k
2 1av j ,k

2 1
a

b
wj ,k

2 J ,

whose derivative with respect to Eq.~6! is

V̇52 (
j ,k51

N

~Pj ,k1Qj ,k!, ~A1!

with

Pj ,k[~2h14D !uj ,k
2 1auj ,kG~uj ,k ,uj ,k

1 !

2Duj ,k~uj 21,k1uj ,k211uj 11,k1uj ,k11!,

Qj ,k[a~uj ,k2v j ,k!
21

ag

b
wj ,k

2 .

Then all Qj ,k’s are positive definite. Let us find the cond
z
ir-

t.
g
t

-
n
-
s-

e
a
.

-
er

tions for the function( j ,k51
N Pj ,k also to be positive definite

The piecewise linear termG satisfies the relation

uj ,kG~uj ,k ,uj ,k
1 !>2auj ,k

2 , ; j ,k51, . . . ,N.

Hence

(
j ,k51

N

Pj ,k> (
j ,k51

N

$puj ,k
2 2Duj ,k~uj 21,k1uj ,k211uj 11,k

1uj ,k11!%[P, ~A2!

with

p5~2h14D22aa!.

Consider the vectorz5(z1 ,z2 , . . . ,zN2), where z1
5u11,z25u12, . . . ,zN25uNN . By using the components o
the vectorz, the functionP takes the quadratic form

P5 (
i , j 51

N2

ai j zizj[zTAz,

whereai j 5aji , the superscriptT denotes the transpose, an
A5iai j i is a square symmetricN23N2 matrix. The qua-
dratic form P will be positive definite if the eigenvalues o
the symmetric matrixA are positive~see Ref.@30#, p. 74!.
Applying Gershgorin theorem@31# to the matrixA, we find
that if p.4D then the union of the Gershgorin disks corr
sponding to the matrixA is located to the right of the imagi
nary axis. Therefore, the inequalityh.aa ensures the posi
tiveness of all eigenvalues of the matrixA, and the formP is
a positive definite quadratic form for conditions~7!. Then,
using Eq.~A1!, it follows that outside the manifoldM the
inequalityV̇,0 is satisfied, andV̇50 in the manifold. Thus
the synchronization manifoldM is globally asymptotically
stable.
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